Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
J Clin Invest ; 124(10): 4294-304, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25157825

RESUMO

The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias.


Assuntos
Eritropoese/genética , Heme/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Anemia/metabolismo , Animais , Linhagem Celular , Células Eritroides/metabolismo , Regulação da Expressão Gênica , Hemoglobinas/metabolismo , Fígado/embriologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Porfirinas/metabolismo , Protoporfirinas/metabolismo , RNA Interferente Pequeno/metabolismo
5.
Blood ; 124(12): 1931-40, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25092175

RESUMO

Global nuclear condensation, culminating in enucleation during terminal erythropoiesis, is poorly understood. Proteomic examination of extruded erythroid nuclei from fetal liver revealed a striking depletion of most nuclear proteins, suggesting that nuclear protein export had occurred. Expression of the nuclear export protein, Exportin 7 (Xpo7), is highly erythroid-specific, induced during erythropoiesis, and abundant in very late erythroblasts. Knockdown of Xpo7 in primary mouse fetal liver erythroblasts resulted in severe inhibition of chromatin condensation and enucleation but otherwise had little effect on erythroid differentiation, including hemoglobin accumulation. Nuclei in Xpo7-knockdown cells were larger and less dense than normal and accumulated most nuclear proteins as measured by mass spectrometry. Strikingly,many DNA binding proteins such as histones H2A and H3 were found to have migrated into the cytoplasm of normal late erythroblasts prior to and during enucleation, but not in Xpo7-knockdown cells. Thus, terminal erythroid maturation involves migration of histones into the cytoplasm via a process likely facilitated by Xpo7.


Assuntos
Eritroblastos/citologia , Eritroblastos/metabolismo , Histonas/sangue , Carioferinas/sangue , Proteína ran de Ligação ao GTP/sangue , Animais , Núcleo Celular/metabolismo , Citosol/metabolismo , Eritropoese/genética , Eritropoese/fisiologia , Técnicas de Silenciamento de Genes , Carioferinas/antagonistas & inibidores , Carioferinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/sangue , Proteína ran de Ligação ao GTP/antagonistas & inibidores , Proteína ran de Ligação ao GTP/genética
6.
Cell Metab ; 17(3): 343-52, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23416069

RESUMO

Sorting of endocytic ligands and receptors is critical for diverse cellular processes. The physiological significance of endosomal sorting proteins in vertebrates, however, remains largely unknown. Here we report that sorting nexin 3 (Snx3) facilitates the recycling of transferrin receptor (Tfrc) and thus is required for the proper delivery of iron to erythroid progenitors. Snx3 is highly expressed in vertebrate hematopoietic tissues. Silencing of Snx3 results in anemia and hemoglobin defects in vertebrates due to impaired transferrin (Tf)-mediated iron uptake and its accumulation in early endosomes. This impaired iron assimilation can be complemented with non-Tf iron chelates. We show that Snx3 and Vps35, a component of the retromer, interact with Tfrc to sort it to the recycling endosomes. Our findings uncover a role of Snx3 in regulating Tfrc recycling, iron homeostasis, and erythropoiesis. Thus, the identification of Snx3 provides a genetic tool for exploring erythropoiesis and disorders of iron metabolism.


Assuntos
Anemia/genética , Ferro/metabolismo , Receptores da Transferrina/metabolismo , Nexinas de Classificação/metabolismo , Análise de Variância , Animais , Western Blotting , Células Cultivadas , Fluoresceína-5-Isotiocianato , Imunofluorescência , Inativação Gênica , Camundongos , Nexinas de Classificação/genética , Peixe-Zebra
7.
Nature ; 491(7425): 608-12, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23135403

RESUMO

Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt (tq209)). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe-2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.


Assuntos
Eritroblastos/metabolismo , Eritropoese , Heme/biossíntese , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas/metabolismo , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patologia , Animais , Modelos Animais de Doenças , Eritroblastos/citologia , Ferroquelatase/metabolismo , Teste de Complementação Genética , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Mitocôndrias/patologia , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Oxirredução , Proteínas/genética , Peixe-Zebra/metabolismo , Proteína Inibidora de ATPase
8.
Blood ; 118(24): 6258-68, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21998215

RESUMO

This article reviews the regulation of production of RBCs at several levels. We focus on the regulated expansion of burst-forming unit-erythroid erythroid progenitors by glucocorticoids and other factors that occur during chronic anemia, inflammation, and other conditions of stress. We also highlight the rapid production of RBCs by the coordinated regulation of terminal proliferation and differentiation of committed erythroid colony-forming unit-erythroid progenitors by external signals, such as erythropoietin and adhesion to a fibronectin matrix. We discuss the complex intracellular networks of coordinated gene regulation by transcription factors, chromatin modifiers, and miRNAs that regulate the different stages of erythropoiesis.


Assuntos
Eritrócitos/citologia , Células Precursoras Eritroides/citologia , Eritropoese , Animais , Proliferação de Células , Cromatina/metabolismo , Epigênese Genética , Eritrócitos/metabolismo , Células Precursoras Eritroides/metabolismo , Eritropoetina/metabolismo , Humanos , MicroRNAs/metabolismo , Modelos Biológicos , Transcrição Gênica
9.
Blood ; 118(16): e128-38, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21860024

RESUMO

It is unclear how epigenetic changes regulate the induction of erythroid-specific genes during terminal erythropoiesis. Here we use global mRNA sequencing (mRNA-seq) and chromatin immunoprecipitation coupled to high-throughput sequencing (CHIP-seq) to investigate the changes that occur in mRNA levels, RNA polymerase II (Pol II) occupancy, and multiple posttranslational histone modifications when erythroid progenitors differentiate into late erythroblasts. Among genes induced during this developmental transition, there was an increase in the occupancy of Pol II, the activation marks H3K4me2, H3K4me3, H3K9Ac, and H4K16Ac, and the elongation methylation mark H3K79me2. In contrast, genes that were repressed during differentiation showed relative decreases in H3K79me2 levels yet had levels of Pol II binding and active histone marks similar to those in erythroid progenitors. We also found that relative changes in histone modification levels, in particular, H3K79me2 and H4K16ac, were most predictive of gene expression patterns. Our results suggest that in terminal erythropoiesis both promoter and elongation-associated marks contribute to the induction of erythroid genes, whereas gene repression is marked by changes in histone modifications mediating Pol II elongation. Our data map the epigenetic landscape of terminal erythropoiesis and suggest that control of transcription elongation regulates gene expression during terminal erythroid differentiation.


Assuntos
Eritroblastos/citologia , Células Precursoras Eritroides/citologia , Eritropoese , RNA Polimerase II/genética , RNA Mensageiro/genética , Acetilação , Animais , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Epigênese Genética , Eritroblastos/metabolismo , Células Precursoras Eritroides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA Polimerase II/metabolismo , Análise de Sequência de RNA , Ativação Transcricional
10.
Nat Cell Biol ; 13(8): 958-65, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743466

RESUMO

Mammals have two principal types of fat. White adipose tissue primarily serves to store extra energy as triglycerides, whereas brown adipose tissue is specialized to burn lipids for heat generation and energy expenditure as a defence against cold and obesity. Recent studies have demonstrated that brown adipocytes arise in vivo from a Myf5-positive, myoblastic progenitor by the action of Prdm16 (PR domain containing 16). Here, we identified a brown-fat-enriched miRNA cluster, MiR-193b-365, as a key regulator of brown fat development. Blocking miR-193b and/or miR-365 in primary brown preadipocytes markedly impaired brown adipocyte adipogenesis by enhancing Runx1t1 (runt-related transcription factor 1; translocated to, 1) expression, whereas myogenic markers were significantly induced. Forced expression of Mir193b and/or Mir365 in C2C12 myoblasts blocked the entire programme of myogenesis, and, in adipogenic conditions, miR-193b induced myoblasts to differentiate into brown adipocytes. Mir193b-365 was upregulated by Prdm16 partially through Pparα. Our results demonstrate that Mir193b-365 serves as an essential regulator for brown fat differentiation, in part by repressing myogenesis.


Assuntos
Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Adipogenia/genética , Adipogenia/fisiologia , Animais , Sequência de Bases , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , MicroRNAs/antagonistas & inibidores , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Mioblastos/citologia , Mioblastos/metabolismo , Oligonucleotídeos/genética , Transfecção
11.
Blood ; 115(23): 4853-61, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20231426

RESUMO

Gene-targeting experiments report that the homeodomain-interacting protein kinases 1 and 2, Hipk1 and Hipk2, are essential but redundant in hematopoietic development because Hipk1/Hipk2 double-deficient animals exhibit severe defects in hematopoiesis and vasculogenesis, whereas the single knockouts do not. These serine-threonine kinases phosphorylate and consequently modify the functions of several important hematopoietic transcription factors and cofactors. Here we show that Hipk2 knockdown alone plays a significant role in terminal fetal liver erythroid differentiation. Hipk1 and Hipk2 are highly induced during primary mouse fetal liver erythropoiesis. Specific knockdown of Hipk2 inhibits terminal erythroid cell proliferation (explained in part by impaired cell-cycle progression as well as increased apoptosis) and terminal enucleation as well as the accumulation of hemoglobin. Hipk2 knockdown also reduces the transcription of many genes involved in proliferation and apoptosis as well as important, erythroid-specific genes involved in hemoglobin biosynthesis, such as alpha-globin and mitoferrin 1, demonstrating that Hipk2 plays an important role in some but not all aspects of normal terminal erythroid differentiation.


Assuntos
Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Células Eritroides/enzimologia , Eritropoese/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose/fisiologia , Proteínas de Transporte/genética , Ciclo Celular/fisiologia , Técnicas de Silenciamento de Genes , Hemoglobinas/biossíntese , Hemoglobinas/genética , Humanos , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Camundongos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
12.
J Clin Invest ; 117(8): 2075-7, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17671642

RESUMO

The forkhead box O (Foxo) subfamily of transcription factors regulates expression of genes important for many cellular processes, ranging from initiation of cell cycle arrest and apoptosis to induction of DNA damage repair. Invertebrate Foxo orthologs such as DAF-16 also regulate longevity. Cellular responses inducing resistance to ROS are important for cellular survival and organism lifespan, but until recently, mammalian factors regulating resistance to oxidative stress have not been well characterized. Marinkovic and colleagues demonstrate in this issue of the JCI that Foxo3 is specifically required for induction of proteins that regulate the in vivo oxidative stress response in murine erythrocytes (see the related article beginning on page 2133). Their work offers the interesting hypothesis that in so doing, Foxo3 may regulate the lifespan of red blood cells, and underlies the importance of understanding the direct targets of this transcription factor and its regulation.


Assuntos
Núcleo Celular/metabolismo , Eritrócitos/metabolismo , Eritropoese , Fatores de Transcrição Forkhead/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Transporte Ativo do Núcleo Celular/genética , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Eritrócitos/citologia , Eritropoese/genética , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/deficiência , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Mutantes , Mitose/genética , Estresse Oxidativo/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...